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Abstract

When one starts to study Game Theory, a game called
Prisoner’s Dilemma is one of the first examples to be in-
troduced.
This report was written just after I completed Stan-

ford’s on-line course on Game Theory. Its purpose is to
investigate whatever aspects I found to be related to the
Prisoner’s Dilemma (PsD).

1 What is it?

The Prisoner’s Dilemma involves two guys having been
arrested by the police. Since there is not enough evidence
to convict them, the police interrogator offers the following
deal to each of them:

If you testify that the other guy is guilty (de-
fect), you will be set free and the other will be
imprisoned for 3 years; unless he also defects,
in which case you will be both imprisoned for 2
years. If you both keep your mouths shut (coop-
erate), each of you will serve 1 year in prison.

Every prisoner knows that the same offer that was made
to him, has been made to his fellow convict. Moreover,
each one knows that the other knowns that he knows, and
so forth. This assumption about the game is called com-
mon knowledge and is a necessary prerequisite to have
a game of complete information. Without common
knowledge, the behavior of the prisoners could be differ-
ent.
The situation is formalized as a strategic game G =

(P,A, u), where the two players in P = {p1, p2} can play
actions from A = {C,D}, where C stands for Cooperate
with the other player (don’t speak to the police) and D
stands for Defect (make a deal with the police to testify
against the other prisoner). After playing the players will
get payoffs denoted by the utility function u = (u1, u2),
where ui : A 7→ ℜ is depicted in Table 1. Since players
are awarded years in prison (they get punishment rather
than reward), the payoffs take a minus sign, to denote that
more years are worse (non-preferable) to less years.

p2 plays
u1, u2 C D

p1 C -1,-1 -3, 0
plays D 0,-3 -2,-2

Table 1: Years in prison for PsD

In case one is intimidated by the negative values for
the utility function appearing in Table 1, one can add a

constant number to all values and the essence of the game
would still remain unaltered. For example, in Table 2 all
payoffs are shifted by +3.

u1, u2 C D
C 2,2 0,3
D 3,0 1,1

Table 2: Shifted values for the utility function

Actually, any positive affine transformation of the
payoffs would not change the character of the game. So,
changing all payoffs from x to ax + b, for any fixed real
numbers a > 0 and b, would not make any difference for
the game itself.

2 Domination

A player is always better off defecting, rather than col-
laborating, no matter what the other player does. For
example, in Table 2, by playing D p1 would gain:

• 3 rather than 2, had p2 played C;

• 1 rather than 0, had p2 played D.

Action profile (D,D) is called a strictly dominant pure
strategy, as it is the only choice surviving iterated re-
moval of strictly dominated strategies. In this re-
spect, PsD is an easy to analyze game, because not only
a preferred choice for players exists, but also it is unique.
Contrast this to the Battle of Sexes game in Table 3, where
although a couple detests going out on one’s own, he would
rather go to cinema and she to the ballet. In this game
players don’t have a single best response (pure) strategy,
yet there is a mixed strategy, namely going together half
of the times to the cinema and half to the ballet. Nash
equilibria are marked as bold entries in the normal form
representations.

↓He She→ Cinema Ballet
Cinema 4,2 1,1
Ballet 1,1 2,4

Table 3: Battle of Sexes

Returning to PsD, its unique dominant strategy is nec-
essarily its unique pure strategy Nash equilibrium.
This fact saves us from the trouble of searching for mixed
strategy Nash equilibria, which requires exponential time
:-). Well, if PsD is so straightforward to analyze, why is
it the most popular game to study?
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2.1 Why dilemma?

What’s really interesting about the Prisoner’s Dilemma1 is
that, although it is common sense that collaboration would
bring the best overall outcome for the two prisoners, i.e.
a total of 2 years in prison by playing (C,C) in Table 1,
our analysis contends that the best choice is to defect,
which would cause the gang to spend at least 3 and most
probably 4 years in jail.

Intuitively, this repels us from the strictly dominant and
Nash equilibrium solution of all defecting and it is formal-
ized with Pareto dominance. For all players, action
profile (D,D) is worse than (C,C), because ∀i, ui(D,D) <
ui(C,C); in other words, all defecting is Pareto dominated
by all collaborating. Unfortunately, there are three Pareto
optimal solutions, namely (C,C), (C,D), (D,C), and the
only solution that is not Pareto optimal is the overall best
response (Nash equilibrium). Hence the singularity that
incites the dilemma to the prisoners.

2.2 Omertà

Defecting may collect a host of credentials, still from our
experience we know that collaboration arises in many oc-
casions due to ethical considerations, such as detesting to
cause harm to your partner, or simply possible risks of
reprisal. These factors can be incorporated in the values
of the payoff function, so that it accurately reflects the
overall consequences for the players.

For example, Mafia members abide to omertà, the code
of silence. Breaking it could incur death, rendering col-
laboration as the only viable strategy. One concludes that
omertà, not only eases the dilemma out of the prisoners,
but also achieves the optimal solution for them as a group!

2.3 Security level

To change perspective, instead of opting for the best solu-
tion for maximizing payoff, prisoners wish to play it safe.
Prisoner p1 worries about the worst case if he chose to
collaborate, call it danger d1(C) = {D} and its value is
u1(C,D) = 0. If p1 defected, the danger is d1(D) = {D}
and its value is u1(D,D) = 1. Of those two dangers,
clearly preferable is the latter, which would push the
security-conscious player to defect. The other prisoner
would choose analogously. Solution (D,D) is called the
maxmin strategy and it is the preferable solution pro-
file if security is top priority.

Defecting is the single maxmin strategy for PsD. Stick-
ing to it ensures your safety, especially if you are unsure
about the sanity of your opponents. It also screens you
from their viciousness, if the job turned sour and they
have hard feelings for you.

Alternatively, the minmax strategy prioritizes on
keeping opponents’ utility as low as possible, reflecting
jealousy as dominant driver of behavior. For two-player
games, such as PsD, the minmax and maxmin strategies
coincide.

1More precisely, it should be named Prisoners’ Dilemma.

3 Generalization of utility values

What can the payoff values of a two-player game be, so
that it can be characterized as Prisoner’s Dilemma? We
already talked about applying any positive affine transfor-
mation, but we can go even further in generality.

First off, the police does not have any bias against any
of the two prisoners—it is indifferent as to whom it will
prosecute, therefore for all players i, it holds ui(x, y) =
u−i(y, x), ∀x, y ∈ A. PsD is a symmetrical game where
the identity of the player does not change the resulting
game facing that player.

It is logical that the police puts its harshest punishment
on the guy that has been nailed as criminal and he failed
to incriminate the other. Therefore, he will get the lowest
payoff, let’s assume 0 without loss of generality, for the
rest of the payoffs to be positive values. So, the ‘victim’
gets u1(C,D) = u2(D,C) = 0. At the other extreme,
the police must offer high incentive to the snitch, let’s call
that payoff value the bait b, so b = u1(D,C) = u2(C,D) >
0. When both players defect, the common payoff for the
talkative case is t. When players collaborate, the common
payoff for the reticent case is r.

In order to enforce the strict dominance of (D,D), the
inequality b > r must hold. Furthermore, to effect the
dilemma for the prisoners, being talkative must be worse
than being reticent, therefore r > t.

u1, u2 C D
C r, r 0, b
D b, 0 t,t

Table 4: Generalized values for any PsD game

Summarizing, a game with the payoff values of Table 4
iss PsD for any real values such that 0 < t < r < b.

3.1 Price of Anarchy

The Price of Anarchy (PoA) is a measure of how much bet-
ter would an optimal gameplay be, compared to the worse
Nash equilibrium. More to the point, it shows whether
players are collectively worse off by pursuing their per-
sonal interests, rather than having opted for their com-
mon welfare. Taking the utalitarian view, the welfare of
a game play is defined as the sum of the utilities the play-
ers would gain, i.e. W (s) =

∑
i∈P ui(s)

2. PoA is then
defined ([Mal11]) as

PoA(G) =
maxs∈S W (s)

mins∈N W (s)

where S is the set of all strategies and N is the set of Nash
equilibria. Clearly, PoA ≥ 1. When PoA = 1, as in the
Battle of Sexes (Table 3), the game is ’benign’ ([Rou15]),
in the sense that personal and common interests do not
collide. Let’s focus on PsD now, in its generic form.

2Focusing on the least privileged player, the egalitarian view de-
fines W (s) = mini∈P ui(s).
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W C D
C 2r b
D b 2t

Table 5: Welfare for PsD

Substituting the values for PsD, where the denominator
for the single Nash equilibrium isW (D,D) and taking into
account the necessary inequality between parameters

PoA(PsD) =
max{2r, b, 2t}

2t
= max{r

t
,
b

2t
} > 1

The value of PoA always being greater than 1 numerically
depicts the prisoners’ dilemma. Moreover, since the bait b
may become as big as the police wants, PoA is unbounded.
Other than the game being intristically devious, a large
value of PoA may be an indication that Nash equilibria,
albeit rational, may after all not be the desired strategy
of game playing ([Rou07]).

4 Extensive game

Until now we assume that both players make their choice,
without any of them knowing the choice of the other.
When their choices are done sequentially, we are talking
about an extensive form game, which is modeled with
the decision tree of Figure 1. In this variant of the game
without loss of generality, p1 chooses first his action, p2 is
informed of p1’s action and then plays accordingly. Payoffs
appear as leaves of the tree.

Figure 1: Extensive form of PsD

Applying the backward induction algorithm on the
extensive form tree, the subgame perfect equilibrium
is (D,D) denoted by the double line from the root to the
leaves of the tree. Indeed, as p1 is the first player to play,
he would refrain from playing C, because it is obvious that
p2 would respond with D to get 3 utility points. Therefore,
p1 will choose D to ensure that –no matter what p2 plays–
he will get at least 1 point. When p2’s turn to play comes,
he will prefer D which awards him 1 point.
Concluding the discussion about the sequential PsD

game, nothing changes from the concurrent game: (D,D)
is the single strategy to follow.

5 Finitely repeated game

Let’s study what happens when the PsD game is repeated
for a finite number of times, say t. In each repetition of the

game the prisoners’ moves happen concurrently, so neither
of them knows what his fellow will choose. Still, they both
know all players’ choices made during all previous games.
When they need to make a choice, they may reminisce all
game history and play accordingly. To discover the strat-
egy for the best outcome, we build the full binary decision
tree of Figure 2, which includes all 22t possible strings of
length 2t containing {C, D}. Using backward induction
we locate the subgame perfect equilibrium consisting con-
sistently of D’s and offering utility t.

Figure 2: Repeated PsD

In reality, however, repeated offenders do not know a
priori when their career will conclude. Being unregenerate
criminals, they will keep breaking the law, to be arrested
(hopefully) some of those times. In situations where the
base game is repeated indefinitely, players can not discern
when the game’s end is coming. This is effectively modeled
as a game with infinite repetitions. The corresponding
decision tree is infinitely deep and no leaf is reachable to
initiate backward induction.

6 Infinitely repeated game

For infinitely repeated PsD future payoffs get lower each
time by a discount factor d ∈ [0, 1), reflecting the fact
that immediate gains are relatively more important than
distant ones—after all the game may end prematurely, if
the sheriff shoots the criminal. Furthermore, prospective
prisoners tend to value youth years out of jail more than
elderly years. If for no other reason, a youngster will surely
serve all his imprisonment years, whereas an senior convict
may get a parole or perish...
We explained previously the inequality that character-

izes the utility values of PsD. For the repeated version
of the game, however, we need to take some extra cau-
tion. Some canny prisoners may decide to alternate col-
laboration and defection splitting the bait in the long run
([Ken07]). To avoid this and keep the character of the
game, therefore, we additionally insist that r > b/2h3.
In order to study infinitely repeated PsD, we need to

study specific strategies. A strategy prescribes the next
action for each player taking into consideration the game’s
history.

6.1 Vendetta

In the absence of any history, the player initially cooper-
ates for his first move as a gesture of goodwill. From then
on, as long as the opponent cooperates, the player contin-
ues to cooperate. Should the opponent choose to defect,

3An implication of this extra condition is that the price of anarchy
cannot get indefinitely large; it can only reach r/t, which is still > 1.
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would infuriate the player and trigger reprisal. In the next
and all subsequent moves the player plays defection for-
ever. This is called grim-trigger strategy.
Let’s consider the utility values for the generalized PsD

of Table 4. Players start with cooperation and if this keeps
on forever, the total utility is

UGT (C) = r + r · d+ r · d2 + r · d3 + . . . =
r

1− d
.

If some player attempts defection4, he will grab the initial
bait, but he will trigger eternal defection, reaping

UGT (D) = b+ t · d+ t · d2 + t · d3 + . . . = b+ t · d

1− d
.

Comparing behaviors within grim-trigger will reveal

UGT (C) ≥ UGT (D) ⇔ dGT ≥ b− r

b− t
.

Under grim-trigger not deviating from cooperation is
preferable as long as the discount factor is sufficiently
large. At last, cooperation gets the prize—remember it
had only succeeded in Pareto domination. Interesting out-
come, taking into account that defection rules the finite
repetition case.

6.2 Forgiveness

A variation of grim-trigger is to punish your opponent just
once after him defecting on you (Figure 3). This forgiving
strategy is called Tit-for-Tat5. Let’s study alternative
behaviors within Tit-for-Tat.

Figure 3: Automata for trigger strategies

If both players start off with (C, C), they will cooper-
ate forever accumulating UTfT (C) = r

1−d . If they both
start off with (D, D), they will loop into defection forever,
settling for t

1−d , which is always worse than UTfT (C). If
they start off with (C, D), actions alternate ad infinitum.
Player that initiated defection earns

UTfT (D) = b+ 0 · d+ b · d2 + 0 · d3 + . . . =
b

1− d2
.

For cooperation to be viable within Tit-for-Tat, there must
be

UTfT (C) ≥ UTfT (D) ⇔ dTfT ≥ b

r
− 1.

Figure 4 shows the merit of cooperation as far as trigger
strategies are concerned.

4At which point of the game defection first occurred is irrelevant:
before it, utility is the same for both players; after it, the above
analysis applies.

5Meaning: A blow or some other retaliation in return for an injury
from another.

Figure 4: Comparison of behaviors within grim-trigger
and Tit-for-Tat strategies

Simulations have shown that Tit-for-Tat is a partic-
ularly good strategy: it consistently achieves excellent
scores among a multitude of competitors (robustness) and
even tops among groups of the fittest opponents who have
survived consecutive competitions ([Axe80]).
Axelrod ([Axe84]) has stated necessary conditions for a

successful strategy:

Nice Not defect before opponent does

Retaliating React to opponent’s bad behavior

Forgiving Fall back to cooperation after retaliation

Non-envious Not strive to score more than the opponent

6.3 Other strategies

Figure 5 shows Win-Stay-Lose-Shift or Pavlov strategy
([Nov93]), an altruistic trigger strategy which beats Tit-
for-Tat, but does not score as much as it. This strategy
decides for next move taking into account only the last
play: if it had a good outcome, repeat your move; other-
wise, alternate.

Figure 5: Automata for other strategies

Tit-for-two-Tats triggers defection only if opponent
plays two consequtive defections; thus it is more forgiving
than the original Tit-for-Tat condoning single, possibly ac-
cidental defections which could cause long runs of mutual
backbiting in the original Tit-for-Tat.
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In the 2004 tournament, a devious approach was taken
by a team from the University of Southampton. They
conquered the three first positions of the final ratings ex-
ploiting teamwork. Agents were able to recognize team-
mates and would sacrifice themselves to boost their team’s
score. This methodology had been suggested by evolution-
ary biologist Richard Dawkings ([Daw76]) as commonly
occurring in nature to effect gene survival by exhibiting
selfishness among members of the same gene against their
competitors.

7 Brief history

Prisoner’s Dilemma was introduced in 1950 as a model
of cooperation and conflict by mathematicians Merrill
Flood and Melvin Dresher working as strategic analysts
at RAND Corporation. Their aim was to question the va-
lidity of Nash’s equilibrium, whose theorem they had just
heard6. Albert Tucker, one of Nash’s professors, gave the
prisoner’s interpretation and named it.

Tit-for-Tat was Anatol Rapoport’s winning solution
to Robert Axelrod’s computer tournaments ([Axe84]) in
the 1980s for programs competing against each other to
achieve the best PsD score.
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